Viscosity undulations in the lower mantle: The dynamical role of iron spin transition

نویسندگان

  • J. F. Justo
  • G. Morra
چکیده

a r t i c l e i n f o a b s t r a c t Keywords: viscosity lower mantle mantle plume elasticity spin transition A proper determination of the lower-mantle viscosity profile is fundamental to understanding Earth geodynamics. Based on results coming from different sources, several models have been proposed to constrain the variations of viscosity as a function of pressure, stress and temperature. While some models have proposed a relatively modest viscosity variation across the lower mantle, others have proposed variations of several orders of magnitude. Here, we have determined the viscosity of ferropericlase, a major mantle mineral, and explored the role of the iron high-to-low spin transition. Viscosity was described within the elastic strain energy model, in which the activation parameters are obtained from the bulk and shear wave velocities. Those velocities were computed combining first principles total energy calculations and the quasi-harmonic approximation. As a result of a strong elasticity softening across the spin transition, there is a large reduction in the activation free energies of the materials creep properties, leading to viscosity undulations. These results suggest that the variations of the viscosity across the lower mantle, resulting from geoid inversion and postglacial rebound studies, may be caused by the iron spin transition in mantle minerals. Implications of the undulated lower mantle viscosity profile exist for both, down-and up-wellings in the mantle. We find that a viscosity profile characterized by an activation free energy of G * (z 0) ∼ 300–400 kJ/mol based on diffusion creep and dilation factor δ = 0.5 better fits the observed high velocity layer at mid mantle depths, which can be explained by the stagnation and mixing of mantle material. Our model also accounts for the growth of mantle plume heads up to the size necessary to explain the Large Igneous Provinces that characterize the start of most plume tracks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic spin state of ferric iron in Al-bearing perovskite in the lower mantle

[1] We investigate the effect of pressure on the electronic spin state of ferric iron on Al-bearing MgSiO3-perovskite using first-principle computations. Ferric iron (6.25 mol%) and Al (6.25 mol%) substitute for Mg and Si respectively. Five substitution models on different atomic position pairs are examined. Our results show that spin state transition from high spin (HS) to low spin (LS) occurs...

متن کامل

Spin transition zone in Earth's lower mantle.

Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extendin...

متن کامل

Tradeoffs in chemical and thermal variations in the post-perovskite phase transition: Mixed phase regions in the deep lower mantle?

The discovery of a phase transition in Mg-rich perovskite (Pv) to a post-perovskite (pPv) phase at lower mantle depths and its relationship to D′′, lower mantle heterogeneity and iron content prompted an investigation of the relative importance of lower mantle compositional and temperature fluctuations in creating topographic undulations on mixed phase regions. Above the transition, Mgrich Pv m...

متن کامل

Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle.

Changes in the electronic configuration of iron at high pressures toward a spin-paired state within host minerals ferropericlase and silicate perovskite may directly influence the seismic velocity structure of Earth's lower mantle. We measured the complete elastic tensor of ferropericlase, (Mg(1-x),Fe(x))O (x = 0.06), through the spin transition of iron, whereupon the elastic moduli exhibited u...

متن کامل

Electronic spin transition of iron in the Earth's deep mantle

spin is a quantum property of every electron, associated with its intrinsic angular momentum. Though there are no suitable physical analogies to describe the spin quantum number, there are two possibilities , called spin 'up' and spin 'down.' The electronic structure of iron in minerals is generally such that valence electrons will more abundantly occupy different spatial orbitals and maintain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015